Crosstalk Measurement in AGH Krakow

Jarosław Bułat, Lucjan Janowski

June 7, 2011

• The existing equipment is expensive

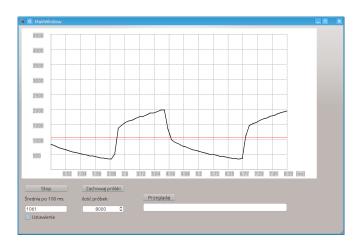
- The existing equipment is expensive
- It would be a good idea to have the same equipment within different labs

- The existing equipment is expensive
- It would be a good idea to have the same equipment within different labs
- The expensive devices can do much more than we need

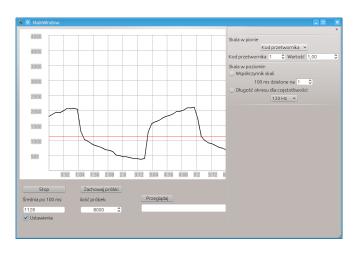
- The existing equipment is expensive
- It would be a good idea to have the same equipment within different labs
- The expensive devices can do much more than we need
- We can make a cheap device which will solve 95% of our problems

• Luminance measurement (photo diode)

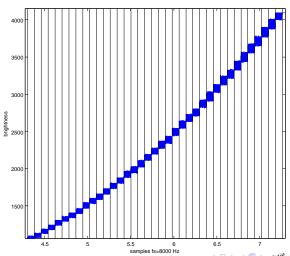
- Luminance measurement (photo diode)
- Different scales (amplifier)

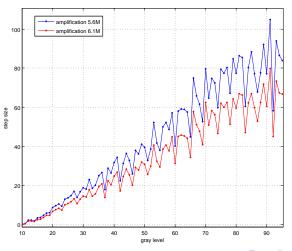

- Luminance measurement (photo diode)
- Different scales (amplifier)
- Digital output (A/C conversion)

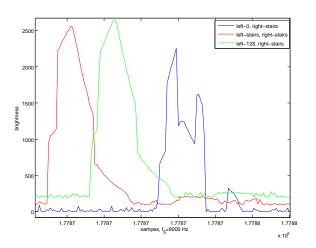
- Luminance measurement (photo diode)
- Different scales (amplifier)
- Digital output (A/C conversion)
- High sampling rate (8000 samples per second)


- Luminance measurement (photo diode)
- Different scales (amplifier)
- Digital output (A/C conversion)
- High sampling rate (8000 samples per second)
- Upload to a PC (RS232 converted to USB interface)

- Luminance measurement (photo diode)
- Different scales (amplifier)
- Digital output (A/C conversion)
- High sampling rate (8000 samples per second)
- Upload to a PC (RS232 converted to USB interface)
- The output is 12 bits


The Interface


The Interface


Synchronization

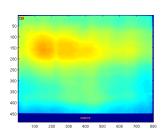
Similarity for Different Amplification

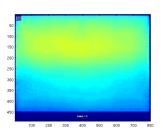
Detail View

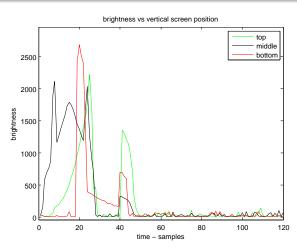
Our Equipment

- Polarization Display: Hyundai W240S
- Shutter Glasses 3DTV: SAMSUNG UE40C8000 + SAMSUNG SSG-2200AR

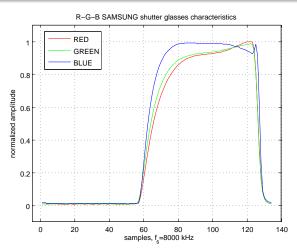
The results are obtained for Samsung TV set.


Samsung Characteristic Space Crosstalk Change


Samsung Characteristic Space Crosstalk Change



Samsung Characteristic Space Crosstalk Change



Samsung Characteristic Space Luminance Change

Samsung Characteristic Shutter Glasses' Characteristics

• Luminance is a function of the screen coordinates

- Luminance is a function of the screen coordinates
- Luminance measurement through right or left glass can give different results

- Luminance is a function of the screen coordinates
- Luminance measurement through right or left glass can give different results
- The distance and angle influence obtained results

- Luminance is a function of the screen coordinates
- Luminance measurement through right or left glass can give different results
- The distance and angle influence obtained results
- The crosstalk links both views values i.e. measuring through left glass we have to take into consideration the right view luminance

Luminance Function

$$I(x, y, g, l_I, l_r, d, \alpha, s, D)$$

- x, y are the coordinates of the point which is central to the measurement device
- g indicates through which glass we are looking, r for right and
 l for left
- I_I is the value which was set to the x, y pixel of the left view in the sequence. I_r similarly is the value for the right view
- d is the distance to the screen
- ullet lpha is the angle of view
- s software used to play
- D display model, maybe even a particular_unit_

Luminance Function Modification

$$I(g, I_I, I_r)$$

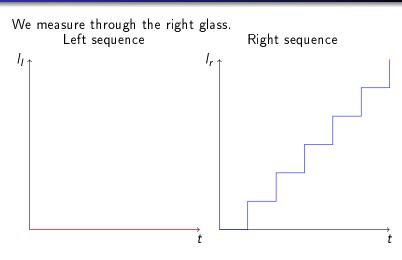
Let us fix all other variables.

If we normalize the value of $I(\cdot)$ to 0, 255 we can very intuitively define crosstalk as

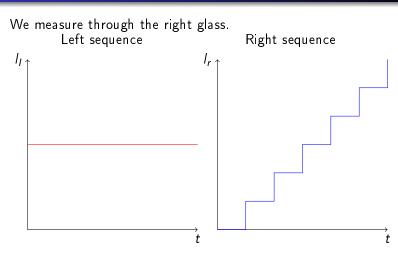
$$C_r = \frac{I_r - I(g = r, I_I, I_r)}{I_r}$$

where C_r is a crosstalk for the right view.

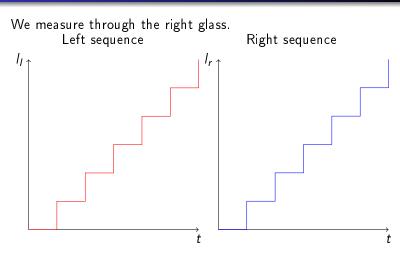
Such definition says that crosstalk is the difference between the value which we wish to display and the value seen by a viewer.


• Glasses incorrect filtering

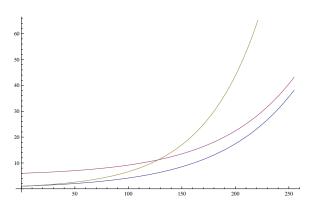
- Glasses incorrect filtering
- Glasses and display incorrect synchronization


- Glasses incorrect filtering
- Glasses and display incorrect synchronization
- Display turning on-off delay

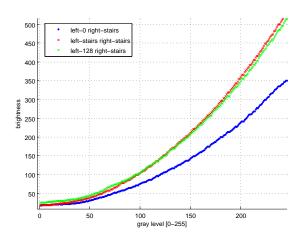
- Glasses incorrect filtering
- Glasses and display incorrect synchronization
- Display turning on-off delay
- Crosstalk cancellation or other active function(s)


The Sequence

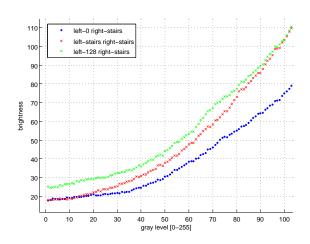
The Sequence

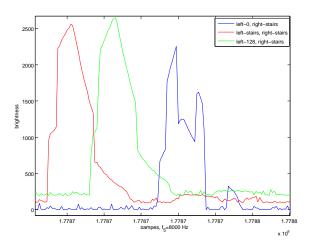


The Sequence



Theory


Let us assume that glasses and glasses-tv set synchronization is the main reason of crosstalk


The Obtained Result

The Obtained Result Zoom

Time Change

• We have a nice tool :)

- We have a nice tool :)
- Can we think about other crosstalk definition?

- We have a nice tool :)
- Can we think about other crosstalk definition?
- At least on our TV set we have large differences in the crosstalk luminance depending on the pixel coordinates

- We have a nice tool :)
- Can we think about other crosstalk definition?
- At least on our TV set we have large differences in the crosstalk luminance depending on the pixel coordinates
- It seems that the most important crosstalk reason is active crosstalk "compensation"

- We have a nice tool :)
- Can we think about other crosstalk definition?
- At least on our TV set we have large differences in the crosstalk luminance depending on the pixel coordinates
- It seems that the most important crosstalk reason is active crosstalk "compensation"
- The final crosstalk value(s) should be strongly simplified